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The heat power released as a result of magnetic hysteresis in a system of small ferromagnetic particles sus-
pended in a solid matrix acted upon by a linearly polarized magnetic field has been determined theoretically
and experimentally. The calculations were done with the use of a model of noninteracting, uniformly magnet-
ized particles with uniaxial anisotropy. Acicular particles of gamma iron oxide were used in the experiments.
It is shown that the heat power released as a result of magnetic hysteresis may measure several megawatts
per cubic meter, which makes it possible to use disperse magnetic systems as volumetric heaters.

Introduction. As far as we know, ferromagnetic materials releasing heat in the process of their magnetization
reversal as a result of magnetic hysteresis in them have not yet been considered as possible heat sources. At the same
time, they can be used for volumetric heating of dielectric bodies that are difficult to heat by traditional methods. Of
interest is the use of small ferromagnetic particles for this purpose. These particles can form heat sources with adapt-
able shape and size. The size of such heat sources can be as small as the cell size, which is very urgent in view of
the existing tendency toward miniaturization of products and development of nanodimensional technologies.

The aim of the present work is theoretical and experimental determination of the heat power released in a
system of small ferromagnetic particles suspended in a solid matrix acted upon by a linearly polarized magnetic field.

Theory. Let us consider a system of noninteracting, magneto-hard, ferromagnetic particles (single-particle ap-
proximation) suspended in a solid matrix. The particles are assumed to be sufficiently small to provide their homoge-
neous magnetization (single-domain). It is known that this state arises when the particle size is smaller than the critical
size R∗  at which the energy of the magnetization inhomogeneity (domain wall) is higher than the energy of the de-
magnetizing field of a homogeneously magnetized particle [1]. This size is equal to tens of nanometers for spherical
particles of various ferromagnetics. Acicular, high-coercivity particles that are used, for example, in the production of
magnetic media, can be in the single-domain state even in the case where their size measures several tenths of a mi-
cron [2]. We will describe the dynamics of magnetization of a particle acted upon by a variable field with the use of
a coherent rotational model. Since the effective, magnetic anisotropy of acicular particles is mainly determined by the
anisotropy of their shape, we will assume that the effective anisotropy is single-axis in character and the orientational
state of the system of particles is completely characterized by sets of unit vectors e and n in the direction of magnetic
moments and the lowest magnetization axes. It is also assumed that the strength of the linearly polarized magnetic
field H(t) = H(t)h, where h is a fixed unit vector in the polarization direction; H(t) = H0 cos (ωt).

The orientation energy of a particle acted upon by a magnetic field is

U = − IVH (eh) − KV (en)2
 . (1)

At a constant external field and a definite orientation of the particle, the position of the magnetic moment is equilib-
rium if ∂U ⁄ ∂ϕ = 0, where ∂ϕ = e × ∂e is the vector of magnetic moment rotation. The equilibrium equation usually
has the form e × Heff = 0, and the effective strength of the field is defined as

Heff = − ∂U ⁄ ∂m = H + Ha (en) n ,   Ha = 2K ⁄ I . (2)
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Note that the magnetic moment at equilibrium lies in the plane formed by the vectors H and n. The fulfillment of the
necessary condition e[n × H] = 0 is evident in view of the relation [n × H] = [n × Heff] following from (2) and the
identity e[n × Heff] B −n[e × Heff].

Let us introduce a polar coordinate system with an axis directed along the field of polarization h. The orien-
tation state of the system will be determined by the angle of deviation of the anisotropy axis from the polarization di-
rection θ and the angle of deviation of the magnetic moment from the anisotropy axis ϕ (Fig. 1). Expression (1) for
the energy of the particle will have the form

u = U ⁄ KV = − a cos (θ − ϕ) − cos
2
 (ϕ) ,   a (t) = a0 cos ωt ,   a0 = IH0

 ⁄ K B 2H0
 ⁄ (Ha) . (3)

The equilibrium position of the magnetic moment at a definite orientation of the anisotropy axis is determined from
the equation

a sin  (θ − ϕ) = sin 2ϕ , (4)

following from the condition ∂u ⁄ ∂ϕ = 0. Among the solutions of (4), the solutions satisfying the condition
∂2u ⁄ ∂ϕ2 > 0 are stable, i.e.,

a cos (θ − ϕ) + 2 cos 2ϕ > 0 . (5)

The behavior of the roots of Eq. (4) is well understood [1]. In the zero field (a = 0) it has four roots: ϕ = 0, %π/2,
π. The extreme values of ϕ correspond to the minimum energy and the stable magnetic moments oriented in the two
physically indistinguishable opposite directions of the easy axis, and the values of ϕ = %π/2 correspond to the unstable
magnetic moments oriented transversely to the easy axis, i.e., positioned at the tops of the energy barrier separating
the stable states. An external magnetic field applied along the anisotropy axis (θ = 0) increases the potential-well depth
in the direction coincident with the field direction (u(ϕ = 0) = −a − 1) and decreases the potential-well depth in the
opposite direction (u(ϕ = π) = a − 1). The equilibrium equation has solutions ϕ = 0, %arccos (−a/2), and π. As follows
from (5), the solution ϕ = 0 is stable at all the values of a and the solution ϕ = π is stable at a < 2 and unstable in
stronger fields. Intermediate solutions correspond to the energy maxima.

Thus, in the case where a magnetic field of subcritical value  a  < 2 is applied along the anisotropy axis, the
magnetic moment can be oriented in one of two directions: along the field (thermodynamically stable orientation) and
in the opposite direction (metastable orientation). In supercritical fields  a  > 2, the magnetic moment can be oriented
only in one direction.

In the case where a variable field with an amplitude a0 exceeding the critical value  a0  > 2 is applied along
the axis of a particle, the magnetic moment changes its direction two times during the period. As a result of each of
these changes, the potential energy stored by the particle decreases by ∆u = 4 (∆U = 4KV). The magnetic moment is
transformed into a new stable state through Larmor precession, decaying during the characteristic spin-lattice relaxation
time (D10−9 sec) because of the "magnetic viscosity" of the particle. For this time, the potential magnetic energy ∆U
is converted into the internal (heat) energy of the particle. If the characteristic time of change in the field is large as

Fig. 1. Scheme of the problem.
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compared to the spin-lattice relaxation time scale, the magnetization reversal of the particle proceeds spasmodically
against the background of the change in the field.

Let us consider the case where a magnetic field is applied in the direction perpendicular to the anisotropy axis
(θ = π/2). The equilibrium equation has solutions ϕ = arcsin (a/2) and %π ⁄ 2 − arcsin (a/2). The extreme roots of this
equation are stable in fields with  a  < 2. The root ϕ = π/2 (the magnetic moment is directed along the field) is un-
stable in fields with  a  < 2 and stable in stronger fields; the direction ϕ = −π/2 opposite to the direction of the field
is always unstable. Thus, in the case considered, in a field with  a  < 2 the magnetic moment can be in one of two
metastable states (positioned between the field and the anisotropy axis variously directed) which, when the strength
 a  = 2 is attained, merge in the direction of the field and form a single thermodynamically stable state. The mag-
netic moment is transformed with increase in the field strength from the metastable to the stable state monotonically
in a reversible way.

In the case where the anisotropy axis is arbitrarily directed, the critical field strength at which the system is
transformed from the state with two possible orientations of the magnetic moment into a state with a single stable ori-
entation is determined from (4) and the equation

a cos (θ − ϕ) + 2 cos 2ϕ = 0 , (6)

representing the condition on which the curve u(ϕ) bends as a result of the merge of one of the maxima with one of
the minima (∂2u ⁄ ∂ϕ2 = 0). Eliminating the angle ϕ from (4) and (6), we obtain an expression for the critical field:

ac
2
 = 4  sin

2 ⁄ 3 θ + cos
2 ⁄ 3 θ


−3

 . (7)

The graph of  ac(θ)  is presented in Fig. 2. As is seen, a critical, spasmodic magnetization reversal field has
a minimum of  ac  = 1 at the anisotropy axis orientations θ = π/4 and 3π/4 and a maximum of  ac  = 2 at θ = 0,
π/2, and π.

The change in the potential energy of the particle as a result of a rapid change in the field strength (in kilo-
volts) is defined by the relation

∆u (θ) = u (θ, ϕ2 (θ), ac (θ)) − u (θ, ϕ1 (θ), ac (θ)) =

= − 2ac sin 



θ − 

ϕ2 + ϕ1
2




 sin 

ϕ2 − ϕ1

2
 + cos

2
 ϕ1 − cos

2
 ϕ2 . (8)

The value of ϕ1 is found by eliminating the quantity a from system (4), (6):

Fig. 2. Modulus of the dimensionless critical field of spasmodic magnetization
reversal of a particle as a function of the angle of orientation of its anisotropy
axis.
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tan
3
 ϕ1 = − tan θ . (9)

The finite position of the magnetic moment is determined from the equilibrium equation (4) at values of θ and a =
ac(θ) determined from (7). We failed to obtain the desired dependence ϕ2(θ) in explicit form. To determine its numeri-
cal value, we will assume that the angle of orientation of the particle relative to the polarization axis of the field, se-
lected as the positive direction, is acute (0 ≤ θ < π/2). In this case, the magnetic moment is transformed in the field
directed oppositely to the polarization axis. Consequently, the critical field strength is

ac (θ) = − 2  sin
2 ⁄ 3 θ + cos

2 ⁄ 3 θ

−3 ⁄ 2

 . (10)

In this case, ϕ2(θ) is determined from the equation

ac (θ) sin (θ − ϕ2) = sin 2ϕ2 . (11)

Equation (11) should be solved at π < ϕ2 < ϕ1 since the magnetic moment is transformed to the sector between the di-
rection of the field and the opposite direction of the easy axis.

If the axes of all the particles are directed along the polarization axis, the heat power released as a result of
the dispersion of particles with a numerical concentration n (volume concentration c = nV) under the action of the
field with a frequency of ω = 2π ⁄ T is defined as

WN = 
2KVn

T
 ∆u (0) = 





0 ,   
4Kcω ⁄ π ,

     
(a0 < 2) ;
(a0 > 2) . (12)

Let us assume that the particle axes are distributed in a random way. If ∫ 
0

π

f(θ)dθ = 1, the function of distribution of

particles over the orientation angles has the form f(θ) = (1/2) sin θ. In the field of amplitude a0 > 2, all particles par-

ticipate in the dissipation. If 1 < a0 < 2, only those particles whose orientation angles satisfy the condition θmin < θ
< θmax participate in the dissipation. The minimum and maximum orientation angles (note that only the orientations in

the first quadrant are considered) are determined from the relations

a0
2
 − 4  sin

2 ⁄ 3 θmin + cos
2 ⁄ 3 θmin




−3

 = 0 ,   θmax (a0) = 
π
2

 − θmin (a0) .

In this case, the dissipation power is equal to

Fig. 3. Relative energy dissipated in an unordered dispersion system of single-
domain particles during one cycle of magnetization reversal.
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W (a0) = 
2KVn

T
 s∆ut = 

cKω
π

 s∆ut ,   s∆ut = 













0 ,     a0 < 1 ;

2  ∫ 

θmin

θmax

 ∆u (θ) f (θ) dθ ,   1 ≤ a0 ≤ 2 ;

1 ,     a0 > 2 .

(13)

Multiplier 2 in the expression for W accounts for the double transformation of the magnetic moment of each particle
during the period of the field. The dependence of the average energy s∆ut, dissipated by one particle as a result of
one spasmodic change in the magnetic moment, on the field amplitude is shown in Fig. 3. Note that this ultimate
(a0 > 2) dissipation power of a disordered system measures a fourth of the corresponding power of the completely or-
dered system.

Experimental. The heat power released was measured at the initial stage of heating of a cylindrical container
containing a 10% (volume concentration) suspension of gamma iron oxide particles in beeswax. The container had a
length of 3 cm and a diameter of 1.5 cm. The temperature was measured at the center of the container by a thermo-
couple positioned along the container axis. The signal from the thermocouple was amplified, fed to an analog-to-digital
converter, and recorded by a computer. Measurements were carried out with an interval of 0.1 sec during the first 10
sec after a variable, transverse magnetic field of frequency 50 Hz was applied to the cylinder. The field strength was
measured by an F43-56 millitesla meter. The measured dependence of the rate of increase in the temperature of the
suspension on the field amplitude is presented in Fig. 4.

Discussion. Since the boundaries of the volume studied with a homogeneously distributed heat source have no
influence on the temperature at its center at the first stage of heating, the rate of heating dT/dt is related to the source
power W by the relation

W = [cp
pρp

c + cp
wρw

 (1 − c)] dT ⁄ dt .

At ρw = 960 kg/m3, ρp = 4.8⋅103 kg/m3, cp
w = 2.9⋅103 J/(kg⋅K), and cp

p = 0.65⋅103 J/(kg⋅K), the maximum dissipation
power (dT/dt = 0.063 K/sec) is equal to 1.75⋅105 W/m3.

Let us compare this result with the result of the calculation: Wmax = cKω ⁄ π. Substituting c = 0.1, K =
1.7⋅104 J/m3, and ω = 314 sec−1 into the above expression, we obtain a value of Wmax = 1.75⋅105 W/m3, which is
close to the measured one. As is seen, the measured and calculated dependences of the dissipation power on the field
strength are, on the whole, close in character; however, the heat-source intensity increased more smoothly with in-
crease in the field strength in the experiment.

Fig. 4. The dependence of the rate of initial increase in the temperature dT/dt
of a 10% suspension of gamma iron oxide particles in beeswax on the ampli-
tude of the magnetization reversal field with a frequency of 50 Hz. dT/dt,
K/sec; H0, kOe.
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CONCLUSIONS

Our calculations and measurements have shown that a hysteresis heat source has a relatively high power.
When the frequency of the field applied increases by an order of magnitude (to 500 Hz), the heat power released also
increases by an order of magnitude. For the system considered, the heat power released is equal to 1.75 MW/m3. The
orientation of particles and the use of particles with a high anisotropy constant make it possible to additionally in-
crease the heat power released. Note that we did not consider problems of efficient conversion of the energy of a vari-
able-field generator into the heat energy of a hysteresis heater.

This work was partly supported by the Belarusian Republic Basic Research Foundation (project B03-205).

NOTATION

a = IH/K, dimensionless strength of the magnetic field; c, volume concentration of particles; cp, specific heat
at a constant pressure, J/(kg⋅K); e, unit vector in the magnetic moment direction; f(θ), function of distribution of par-
ticles over orientations; H, magnetic field strength, Oe; h, unit vector in the field-polarization direction; Ha, strength
of the magnetic anisotropy field, Oe; Heff, effective magnetic field, Oe; I, magnetization, G; K, magnetic anisotropy
constant, Erg/cm3; m = IVe, magnetic moment of a particle, G⋅cm3; n, unit vector in the anisotropy-axis direction; n,
numerical concentration of particles; R∗ , critical size of a single-domain particle, m; t, time, sec; T, period of change
in the field, sec; V, volume, cm3; U, orientation energy of a particle, Oe; u = U/KV, dimensionless orientation energy
of a particle; W, source power, W/m3; ∆U, change in the energy of a particle as a result of spasmodic magnetization
reversal, Oe; ∆u = ∆U ⁄ KV, dimensionless change in the energy of a particle as a result of the spasmodic magnetiza-
tion reversal; ϕ, angle of deviation of the magnetic moment from the anisotropy axis; ϕ1 and ϕ2, angles of equilibrium
orientation of the magnetic moment before spasmodic change and after it; θ, angle of deviation of the anisotropy axis
from the polarization direction; ρ, density, kg/m3; ω, frequency, sec−1. Subscripts: 0, amplitude value; max, maximum
value; min, minimum value; N, parallel; p, particle; w, wax; a, anisotropy, c, critical; eff, effective; p, pressure.
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